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In his dissertation research, Hillel Einhorn examined a question that is
central to behavioral decision research and of substantial applied interest: How
do people evaluate and choose among a set of multiattribute alternatives
(Einhorn, 1970; Einhorn, 1971)? ;inhorp concluded that no single model such as
additive utility was likely to be an adequate general representation of
evaluative decision making. He proposed that coﬁditions should be specified
under which various models apply as representations of human decision making. The
work described in this chapter follows Einhorn’s suggestion and considers why
decision makers, given a particular decision task, select one particular decision
strategy instead of others.

Contingent strategy selection reflects the fascinating ability of
individuals to adapt to a wide variety of environmental conditions. The issue of
strategy selection also reflects a growing concern in cognitive psychology with
the regulation of cognition, or "metacognition" (Brown, Bransford, Ferrara, &
Campioni, 1983). The research program described in this chapter emphasizes the
adaptivity of human decision behavior to task demands and the cognitive control
question of how one decides how to decide.

Deciding How To Decide

The most frequently advocated approach to explaining strategy selection is
to assume that strategies have differing advantages and disadvantages and to
hypothesize that an individual selects the strategy that is "best" for the task
(Beach & Mitchell, 1978). Several factors, such as the chance of making an error.
(Thorngate, 1980), avoidance of conflict (Hogarth, 1987), and justifiability
(Tversky, 1972), can affect decision makers' perceptions of the appropriateness
of a strategy for a particular task and hence can affect strategy selection.

However, our research has focused on the role played in strategy choice by the




cognitive effort (mental resources) required to execute a strategy in a specific
task environment.

The idea that decision making is influenced by considerations of cognitive
effort is an old one (e.g., Simonj 1955; Marschak, 1968). It seems obvious, for
example, that differert strategies require different amounts of computational
effort. Expected utility maximization, for instance, requires a person to
process all relevant problem information and to trade off values and beliefs.
The lexicographic choice rule (Tversky, 1969), on the other hand, chooses the
alternative which is best on the most important attribute, ignoring much of the
potentially relevant problem information.

At a more precise level of analysis, however, a comparison among decision
strategies in terms of cognitive effort is more difficult. In part this is
because decision strategies proposed in the literature have varied widely in
terms of their formal expression. Some have been proposed as formal mathematical
models (e.g., elimination-by-aspects, Tversky, 1972), and others as verbal
process descriptions (e.g., the majority of confirming dimensions rule, Russo &
Dosher, 1983). The research described here developed a language that could be
used to express a diverse set of decision strategies in terms of a common set of
elementary information processes. That language allows strategy selection to be
investigated at a detailed information processing level rather than at a more
general level of analysis, such as comparisons of analytic vs. nonanalytic (Beach
& Mitchell, 1978) or analytic vs. intuitive strategies (Hammond, 1986). One can
examine, for instance, how cognitive effort is affected by both the amount of
information to be processed and the specific mix of elementary information
processes used.

In addition to cognitive effort, we have been concerned with how the use of

simplified decision rules affects the accuracy of decisions. For example, a
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simple equal weighting strategy can closely approximate the accuracy of an
optimal weighting rule in some task enviromments (Einhorn & Hogarth, 1975).

The rest of this chapter is organized as follo&s: First, studies which test
and elaborate the implications of an efforc(accuracy framework for strategy
selection are briefly reviewed. fhe sﬁudies include (1)'Monte-Carlo simulations
of how the effort and accuracy of different strategies might vary across task
environments; (2) An empirical test of various models of subjects’ effort using
different decision strategies in different choice environments; and (3)
Experiments that examine whether the actual decision behaviors exhibited by
subjects across different task environments are consistent with the efficient
processing patterns identified by the simulation. Some unresolved issues
relating to the effort/accuracy framework are then considered, such as the extent
to which strategies may not be selected as much as "constructed" throughout the
decision process. Such "construction" may allow individuals to notice and
exploit structure in the choice set in ways that reduce effort (Bettman, 1979).
Finally, some implications of our research for decision aiding are described.

Effort, Accuracy, and Choice Environments

As typically formulated, decision problems consist of three basic
components: (1) The alternatives available to the decision maker; (2) Events or
contingencies that relate actions to outcomes, as well as their associated
probabilities; and (3) The values associated with the outcomes. These
informational elements, along with a goal statemeir.t (such as "choose the
preferred alternative"), represent the task environment presented to a decision
maker. The decision maker’s internal representation of this task environment is
the individual’s problem space, containing the solution (i.e., the preferred

alternative) which must be identified (Newell & Simon, 1972). Generally,




decision tasks become more difficult with more alternatives, multiple
contingencies, and multiple conflicting dimensions of value.

Much research supports Einhorn’s suggestion (1970, 1971) that an individual
will utilize a number of different infqrmation processing strategies tc solve
decision tasks (Abelson & Levi, 1985). Sometimes the strategies involve an
exhaustive use of the available information in a form of compensatory processing.
However, often the strategies used are heuristics that simplify search through
the problem space either by disregarding some problem information or simplifying
the processing done on particular elements of the problem. Examples of the
latter are within-attribute comparison as opposed to the combining of information
across attributes (Russo & Dosher, 1983). Alternative heuristics such as
elimination-by-aspects (EBA), satisficing (SAT), lexicographic (LEX), and equal
weighting (EQW) represent different simplification strategies for search through
the problem space. For example, the equal weighting rule reduces processing by
ignoring any differential weights for the decision outcomes while still examining
the values for all outcomes. The lexicographic rule, on the other hand, uses the
weights to limit search to one or a few of the most important attributes and
simplifies processing by only using comparisons of one outcome value to another.
More generally, people seem to react to the discrepancy between information
processing demands and information processing capacity in decision making by (1)
selectively processing a subset of the available information and/or (2)
selectively applying operations to that information that are easier to perform.

The use of heuristics that save effort can also lead to serious decision
errors (Tversky, 1969). However, some cognitive simplifications can both save
effort and maintain reasonably high levels of accuracy in a given task
environment (Einhorn & Hogarth, 1975). This point is crucial; we do not believe

that heuristics and biases should be viewed as synonymous. Rather, we argue that




the use of heuristics often represents intelligent, if not optimal, decision
making. Given this perspective, characterizing the effort required to use
various heuristics and the accuracy of those heuristics in various task
environments is essential. 1In thg next section, we report Monte-Carlo simulation
experiments that provide estimates of accuracy and effort for several heuristics
in different decision task environments. Decision makers can potentially use
such estimates to both save effort and maintain accuracy by selecting different
heuristics for different task environments. In later sections, we examine
whether decision makers in fact adapt to different tasks in ways that the
simulations suggest are relatively efficient (i.e., that maintain accuracy with
savings in effort).

Monte-Carlo Simulations of Effort and Accuracy in Choice

The two main purposes of the simulation studies were (1) To characterize the
effort and accuracy of various strategies in different decision environmments; and
(2) To develop insights into how processing might change if efficient
effort/accuracy tradeoffs were desired in selecting decision strategies. The
simulations provide a "task analysis" of the problem of strategy selection in
decision making. Additional details on the simulations can be found in Johnson
and Payne (1985) and Payne, Bettman, and Johnson (1988).

Measuring Strategy Effort

Building on ideas of Newell and Simon (1972), ten decision strategies were
decomposed into elementary information processes (EIPs). The set of strategies
included weighted additive (WADD), elimination-by-aspects (EBA), equal weight
(EQW), lexicographic (LEX), majority of confirming dimensions (MCD), satisficing
(SAT), lexicographic semi-order (LEXSEMI), two combined strategies, and a random
choice rule. Each decision strategy was viewed as a specific sequence of EIPs,

such as reading the values of two alternatives on an attribute, comparing them,




and so forth. The set of EIPs used in the simulations included operators to (1)

Read an alternative’s value on an attribute into working memory; (2) Compare two

alternatives on an attribute; (3) Add the values of two attributes in working
memory; (4) Calculate the size of the Difference of two alternatives for an
attribute; (5) Weight one value by anoﬁher (Product) ; (é) Eliminate an
alternative from consideration; (7) Move to the next element of tye task
environment; and (8) Choose the preferred alternative and end the process.

A count of the total number of EIPs used by a strategy to reach a decision
in a particular choice environment provides a straightforward measure of the
effort associated with the use of that decision strategy in that environment. !
Several areas of cognitive research use EIP counts to measure processing load
(e.g., Card, Moran, & Newell, 1983).

To illustrate how EIP counts of effort would be determined, consider the set
of EIPs given above and a simple decision problem involving two options (A and
B), two events with probabilities (weights), and two payoff values per option
(one payoff for each of the two possible outcomes). For an elimination-by-
aspects rule, the process might proceed as follows: First, the decision maker
finds the most probable outcome (most important attribute; throughout this paper
we use the terms outcome and attribute interchangeably). This involves reading
the two probability values and comparing the two values to determine which is
larger (2 Reads and 1 Compare). Next, the decision maker might acquire an
explicit cutoff value and then compare the payoff values on the most probable
outcome for each option against that cutoff value. If the first option (A)
failed the cutoff and the second option (B) passed tue cutoff, then a choice of B
would be made. This process of comparing options to the cutoff involves 3 Reads,

2 Comparisons, 1 Elimination, and 1 Choice. Thus, the entire decision process




consists of 5 Reads, 3 Compares, 1 Elimination, and 1 Choice, for a total EIP
Count of 10.

In contrast, if the weighted adding rule were used on the same size decision
.problem (2 options, 2 events, and 4 payoff values), one might proceed as follows:
First the probability of event 1 and the payoff of option A given event 1 would
be acquired (2 Reads). Next, the payoff would be multiplied by the probability
(1 Product). The process would be repeated for the next probability and payoff
and the two products would be added, for a total of 4 Reads, 2 Products, and 1
Addition. The same process would be repeated for option B. Finally, the overall
values for A and B would be compared (1 Compare) and the option with the largest
value chosen (1 Choice). The total EIP count would be 16 (8 Reads, 4 Products, 2
Additions, 1 Compare, and 1 Choice).

A particular set of EIPs, like the one given above, requires a theoretical
judgment regarding the appropriate level of decompositioé. For instance, the
product operator might itself be decomposed into more elementary processes. We
hypothesized, however, that a reasonable approximation of the cognitive effort
associated with a strategy could be obtained from the above level of
decomposition. An experimental test of this hypothesis is reported below.

The strategies examined in the simulations differed in several ways, e.g.,
amount of information processed, selectivity in processing, and form of
processing. For example, the Weighted Additive (WADD) process involves no
selectivity in processing. The values of each alternative on all the relevant
attributes and all the relative importances (weights) of the attributes are
considered. The WADD strategy also uses alternative-based processing: all
information about the multiple attribute values of a single alternative is
processed before information about a second alternative is considered. In

contrast, elimination-by-aspects (EBA) selectively attends to a subset of the




available information. The processing of information is also attribute-based.
That is, information about the values of several alternatives on a single
attribute is processed before information about a second attribute is processed.
When the results of the simuiation are presented in Table 1 below, the form of
processing and selectivity are indicated for each rule as an aid in interpreting
those results.
Measuring Accuracy

Accuracy of choice could be defined by basic principles of coherence, such
as avoiding selection of dominated alternatives or intransitive patterns of
preferences. However, more specific criteria for choice accuracy can be
developed in certain types of task environments. For instance, the expected
utility (EU) model is generally suggested as a normative decision procedure for
risky choice because it can be derived from more basic principles. A special
case of the EU model, the maximization of expécted value (EV), has been used as a
criterion to investigate the accuracy of decision heuristics via computer
simulation (Thorngate, 1980). A similar model, the weighted additive rule, is
often used as a criterion for decision effectiveness in multiattribute choice
(Zakay & Wooler, 1984).

In our research, we have emphasized a measure of accuracy that considers
the performance ot a heuristic relative to the upper and lower baseline
strategies of (1) maximization of Expected Value (or the equivalent Weighted
Additive Value) and (2) random choice. The acruracy measure provides an
indication of the relative performance of heuristics:

Relative EV

Evheuristic rule choice-“"random rule choice

Accuracy EV EV

expected value choice-""random rule choice

This measure is bounded by a value of 1.0 for the expected value rule and an

average value of 0.0 for the random rule. While we have relied primarily on this




measure of relative accuracy, we have used other measures with similar results

(Johnson and Payne, 1985). Note, incidentally, that an Expected Value strategy
represents a complete use of the information in the preblem statement. A random
choice rule, in contrast, uses none of the information.

Task and Context Environments

Several aspects of choice tasks were investigated in the simulations,
including number of alternatives, number of attributes (outcomes), time pressure,
dispersion of probabilities within each gamble, and the possibility or absence of
dominated alternatives. Task size (i.e., the number of alternatives and the
number of attributes) was included in the simulation because variations in choice
problem size have produced some of the clearest examples of contingent decision
behavior (Payne, 1982). Time pressure was of particular interest, since the use
of a normative decision strategy like expected value maximization may be less
attractive or infeasible under time constr#ints (Simon, 1981). Under time
pressure, deciding how to choose becomes a selection of the "best” of the
available heuristics, not a choice between using some heuristic or the optimal
normative rule. To illustrate the dispersion of probabilities variable, a four
outcome gamble with a low degree of dispersion might have probabilities of .30,
.20, .22, and .28 for the four outcomes. In contrast, a gamble with a high
degree of dispersion might have probabilities such as .68, .12, .05, and .15.
This variable was included because Thorngate (1980) had suggested that
probability information may be relatively unimportant in making accurate risky
choices (see also Beach, 1983). Finally, the absence or possibility of dominated
alternatives was included because McClelland (1978), among others, has suggested
that the use of certain simplification procedures, such as the equal weighting

strategy, is dependent upon the presence of dominated alternatives.
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Time constraints, number of alternatives, and number of attributes represent
task variables, which are variables associated with general characteristics of
the decision problem and not dependent on the particular values of the
alternatives. Dominance possible or absent and dispersion of probabilities, on
the other hand, represent context variables, which are variables associated with
the particular values of the alternatives (Payne, 1982).

Results

Table 1 summarizes the results of our simulations for the two context
variables and the two extreme time pressure conditions (absent and severe).
These results support four major conclusions. First, the simulations show that
heuristics, in at least some task environments, can approximaté the accuracy of
normative rules with substantial savings in effort. For example, in an
environment characterized by high dispersion in probabilities, dominance
possible, and no time constraint, the lexicographic strategy achieved a 90%
relative accuracy score, with only about 40 percent of the effort that would be

needed to use a normative strategy like EV (i.e., 60 as opposed to 160 EIPs).

Second, no single heuristic did well across all decision environmments. For
instance, in the no time pressure condition, when the dispersion in probabilities
varied from high to low, the accuracy of the lexicopgraphic rule dropped from 90%
to 69%. In contrast, the alternative simplification represented bybthe equal
weighting strategy produced an increase in accuracy from 67% to 89% as dispersion
in probabilities went from high to low. The existence of efficient heuristics
and the sensitivity of heuristics to changes in task environments are highlighted

by Figure 1, which shows the relative effort and accuracy associated with
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different strategies in two different environments. One prediction that can be
drawn from Figure 1 concerns the relative effort and accuracy of the equal weight
and lexicographic strategies as a function of dispersion in probabilities. Note
that for the equal weight strategy in a low dispersion environment and the
lexicographic strategy under high dispersion, the accuracy obtained is roughly
equal. However, less effort is required in the high dispersion condition. Thus,
a decision maker desiring relatively high levels of accuracy could maintain that
accuracy across contexts through a shift in strategies, but with a substantial
savings in effort in the high dispersion environment. More generally, Figure 1
and other results reported in Johnson and Payne (1985) and Payne et. al. (1988)
suggest that in order to achieve both a reasonably high level of accuracy and low
effort, a decision maker would have to use a repertoire of strategies, with

strategy selection contingent upon situational demands.

A third conclusion was that both the effort and accuracy of strategies were
differentially affected by number of alternatives, number of attributes, and the
possibility or absence of dominance. For example, the effort required to use
heuristics such as EBA increased much more slowly than the effort required to use
the weighted additive rule as the number of alternatives increased. This
simulation result is compatible with substantial empirical research showing
strategy shifts due to the number of alternatives (Payne, 1982). The decision
task characterized by dominance absent and low dispersion in probabilities was
one in which no heuristic did particularly well in terms of accuracy. The
accuracy score of the best simple heuristic, LEX, was only .67, or .22 less than

the accuracy score for the "best" heuristic in the other environments. Since a
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decision maker would not be able to reduce effort appreciably without suffering i
substantial i0ss in accuracy in this type of task environment, such an
environment should be perceived as particularly difficult. In fact, when asked,
subjects report that decisions in the dominance absent, low dispersion choice
environments are more difficult. ‘Subjects also take lodger to/make decisions in
this environment than in the other three environments representing combinations
of dominance possible or absent and dispersion.

Fourth, time constraints were shown to have differential effects on the
various decision strategies. The weighted additive rule, for example, showed a
reduction in accuracy from the baseline value of 1.0 under no Fime pressure to an
average accuracy of only .12 under the most severe time constraint in the
dominance absent-low dispersion environment. Strategies which require many EIPs
show degraded performance under time pressure because such procedures must be

2 In contrast, the EBA heuristic was relatively

truncated when time runs out.
unaffected by time pressure. The average accuracy across environments was only
reduced from .69 under no time pressure to .56 with severe time pressure. More
generally, under high time pressure, strategies that process at least some
information about all alternatives as soon as possible performed best.

The simulation results indicated what a decision maker could do to adapt to
various decision environments. The results clearly suggested that a decision
maker could maintain a high level of accuracy and minimize effort by using a
diverse set of heuristics, changing rules as context and task characteristics
change.

Note, however, that the simulation results alone do not identify which
particular strategy a decision maker will select in a given decision task. That

would depend on the degree to which a decision maker was willing to trade

decreases In accuracy for savings in effort. This tradeoff might depend on
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factors such as the decision maker’'s goal structure, the size of the payoffs, and
the need to justify a decision. We will discuss the role of such factors in
strategy selection in more detail below, but it is important to recognize that
the simulation indicates general changes in processing that might be expected
regardless of any particular trade-off between effort and accuracy, e.g., the

effect of dispersion on the attractiveness of a lexicographic versus equal-weight

strategy.

Thus, the results of the simulation yield interesting predictions about the
general patterns of processing which might characterize decision makers desiring
to make efficient accuracy/effort tradeoffs. However, the simulation work itself
would remain only suggestive without further validation. For example, the
simulation makes the crucial assumption that EIP counts represent reasonable
measures of effort. Both this assumption and the predicted patterns of
processing can be examined experimentally with actual decision makers. The next
two sections report this empirical work.

Cognitive Effort in Choice

The research reported in this section examined the assumption that EIP
counts provide a measure of cognitive effort. Decision makers made choices using
different prescribed strategies for choice sets varying in size. Both decision
latencies and self-reports of decision difficulty were obtained as measures of
strategy execution effort. The crucial question was whether models based on EIP
counts could predict these two indicators of cognitive effort in choice. 1In
addition, we characterized how the effort required by subjects to use different
decision strategies varied as task size (number of alternatives and number of
attributes) varied. Given space constraints, the following description of our
methods and results is necessarily limited; see Bettman, Johnson, and Payne (In

press) for more details.
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Ove ew of method

Seven subjects were trained to use six different decision strategies:
weighted additive, equal weighting, lexicographic, elimination-by-aspects,
satisficing, and majority of confirmiqg dimensions. Each strategy was used by
each subject in a separate session to make twenty decisions ranging in problem
size from two to six alternatives and from two to four attributes. The decision
problems involved selection among job candidates. For each session, subjects
were to use the prescribed rule exactly as given to them to make their
selections. Subjects used the Mouselab computer-based information acquisition
system to acquire information and make their decisions (Johnson, Payne, Schkade,
and Bettman, 1988). Subjects used a mouse as a pointing device to move a cursor
around a screen containing the probabilities and outcome values in a matrix
format. When the cursor pointed to a cell of the matrix, the information in that
cell was displayed and all other information remained concealed. The computer-
based acquisition system monitored the subjects’ information sequences and
recorded latencies for each acquisition, the overall time for each problem, any
errors made by the subject (i.e., departures from the prescribed search pattern
or choice), and the choice. In addition, subjects rated the difficulty of each
choice and the effort each choice required on two response scales presented at
the end of each decision problem. Subjects also provided data in a seventh
session for twelve choice problems of various sizes where the subject was free to
use any strategy desired.
Results

As expected, decision problems of increasing complexity, i.e., more
alternatives and/or more attributes, took longer and were viewed as more
effortful. Of greater iriterest, the effects of task complexity varied by

strategy. Compared to other strategies, the weighted additive rule (WADD) showed
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much more rapid increases in response time and somewhat more rapid increases in
self-reports of effort as a function of increased task complexity. Thus, there
was evidence of a strategy by task interaction in terms of these two indicators
of cognitive effort.

The central question of interest, however, was whether the EIP framework
could predict the effort required by each strategy in the various task
environments. To answer this question, we used regression‘analys;s to assess the
degree to which four alternative models of effort based on EIPs fit the observed
response times and self-reports of effort. The simplest model treated each EIP
as equally effortful and summed the numbers of each component EIP to get an
overall measure of effort (the equal-weighted EIP model). The'second model
allowed the effort required by each individual EIP to vary (the weighted EIP
model) by using counts for each of the individual EIPs as separate independent

variables. A third model allowed the effortfulness of the individual EIPs to

vary across rules (the weighted EIP by rule model). While such a variation is

possible, of course, the goal of developing a unifying framework for describing
the effort of decision strategies would be much more difficult if the sequence of
operations or the rule used affected the effort required for individual EIPs.

The fourth model allowed the required effort for each EIP to vary across
individuals, but not rules (the weighted EIP by individual model), based on the
expectation that some individuals would find certain EIPs relatively more
effortful than other individuals. A fifth model based simply on the amount of

information processed (the information acquisitions model) was also assessed as a

baseline model of decision effort. This last model implies that the specific
type of processing done on the information acquired makes little or no difference

in determining decision effort.
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Overall, the results yielded strong support for the EIP approach to strategy
effort, A model of effort based upon weighted EIP counts provided good fits for
response times (R2 = .84) and self-reports of effort (R2 = .59). 1In addition,
the fit of the weighted EIP model to the data was statistically superior to the
baseline model of information acquisitions and to the equal-weighted EIP model.
Thus, it appears that a model of cognitive effort in choice requires not only
concern for the amount of information processed, but also Aifferential weighting
of the particular processes (EIPs) applied to that information. Interestingly,
the estimates of the time taken for each EIP were mostly in line with prior
cognitive research. For example, the READ EIP combines encoding information with
the mntor activitv of moving the myuse. Its estimated latency is 1.19 seconds.
This estimate is plausible, since it might consist of the movement of the mouse,
estimated to be in the range of .2 - .8 seconds by Johnson, Payne, Schkade, and
Bettman (1988), énd an eye fixation, estimated to require a minimum of .2 seconds
(Russo, 1978). ADDITIONS and SUBTRACTIONS both take less than on second, with
estimates of .84 and .32, respectively. These values are not significantly
different and are consistent with those provided by Dansereau (1969), Groen and
Parkman (1972), and others (see Chase, 1978, Table 3, p. 76). OQur estimate for
the PRODUCT EIP, 2.23 seconds, is larger than that commonly reported in the
literature. The time for COMPARES is very short, .08 seconds, and that for
ELIMINATIONS, 1.80 seconds, is relatively long. This may reflect the
collinearity of COMPARES and ELIMINATIONS.

The weights for the various EIPs were essentially the same regardless of the
decision strategy used. That is, the fits for the more complex weighted EIP by
rule model were essentially the same as the fits for the weighted EIP model.

This supports the assumption of independence of EIPs across rules.
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However, the results showed significant individual differences in the effort
associated with individual EIPs, suggesting that individuals may choose different
decision strategies in part because component EIPs may be relatively more or less
effortful across individuals. In fact, Bettman, Johnson, and Payne (In press)
show that the processing patterns used by subjects in an unconstrained choice
environment were related to the relative costs of certain EIPs, although the
limited number of subjects in that study precluded any stréng con;lusions.
Subjects for whom arithmetic operators were relatively more difficult, as
indicated by the coefficients for the various EIPs, showed greater selectivity in
processing.

To summarize, we found strong support for the EIP approach-to conceptualizing
and measuring the effort of executing a particular choice strategy in a specific
task environment. Next, we examine whether the general patterns of processing
predicted by the simulation agree with the processing patterns exhibited by
decision makers adapting to variations in dispersion of probabilities and time
pressure. Such a match, together with the success of the EIP approach to
measuring effort reported above, would provide powerful support for our proposed
approach to centingent strategy selection. In the next section, therefore, we
consider adaptivity in strategy selection when both effort and accuracy may be
valued and when subjects are free to use any information processing strategy they
wish in making a choice.

Adaptive Strategy Selection

The experiments asked the following two questions: (1) To what extent do
people vary their information processing behavior as a function of context
effects such as the dispersion of probabilities and task effects such as time

pressure?; and (2) Are these changes in processing in the directions suggested by
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the simulation work described earlier? Again, the method and results can only be
summarized. Details can be found in Payne, Bettman, and Johnson (1988).
Method

Two experiments were conduccgd in yhich subjects were asked to make a series
of choices from sets of risky options. Each choice set contained four risky
options, with each option offering four possible outcomes (attributes). For any
given outcome, the probability was the same for all four options. Thus, there
was only one set of probabilities for each set of four alternatives. The payoffs
ranged from $.01 to $9.99. Dominated options were possible. At the end of an
experiment, subjects actually played one gamble and received the amount of money
that they won. The sets varied in terms of two factors: (1) presence or absence
of time pressure and (2) high or low dispersion in probabilities. 1In terms of
the simulation, the no time pressure conditions correspond to the dominance
possible, low and high dispersion conditions shown in Figure 1. The high time
pressure sets correspond to conditions not shown in Figure 1, but the general
patterns of results for such conditions were briefly discussed in the section
describing the simulation results. In the first experiment, the time pressure
condition involved a 15 second time constraint. In the second experiment, half
the subjects had a 15 second constraint. The other nalf had a more moderate 25
second time constraint. Also, in the second experiment subjects returned for a
second experimental session that was similar to the first except that the time
constraint was at the level they had not yet experienced, i.e., the time pressure
for the second session was set at 25 seconds if the subject was in the 15 second
condition on the first day and vice versa. For comparison, the average response
time for the no time pressure conditions was 44 seconds.

The design was a complete within-subjects procedure, with a total of 40

randomly ordered decision problems in an experimental session, ten in each of the
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four dispersion by time pressure conditions. This design was motivated by the
desire to provide the strongest possible test of adaptivity in decision making
(i.e., the same subject would be expected to switch strategies from one trial to
the next). The subjects were notAprovided any accuracy feedback in these
experiments for two reasons: (1) It is the exception, rather than the rule, for
probabilistic decision problems to provide immediate and clear outcome feedback
(Einhorn, 1980); (2) To the extent that adaptivity is exhibited in such
situations, it suggests that adaptivity is crucial enough to decision makers that
they will guide themselves to it without the need for explicit feedback.

Information acquisitions, response times, and choices were monitored using
the Mouselab system (Johnson et. al., 1988). For the time constrained trials,
the Mouselab system ensured that subjects could not collect any additional
information once the available time had expired. A clock on the display screen
was used to indicate the time left as it counted down.

Results

Overall, the results for subjects’ actual decision behaviors validated the
patterns predicted by the simulation. Subjects showed a substantial degree of
adaptivity in decision making, although this adaptivity was not perfect.

More specifically, subjects processed less information, were more selective
in processing, and tended to process more by attribute when dispersion in
probabilities was high rather than low. Moreover, accuracy was equivalent for
the two dispersion conditions. Thus, subjects showed an ability to take
advantage of changes in the structure of the available alternatives so as to
reduce processing load while maintaining accuracy. Recall that this prediction
was drawn from the simulation results.

At the level of individual subject behavior, there was evidence that

subjects who were more adaptive in thelr patterns of processing (i.e., relatively
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more selective and attribute-based processors in high dispersion environments)
also performed better in terms of relative accuracy scores. Importantly, this
increase in performance was not accompanied by a significant increase in effort.
Hence, more adaptive subjects also appeared to be more efficient decision makers.

Several effects of time pressure were also demonstrated. First, under
severe time pressure, people acceleraﬁed their processing (i.e., less time was
spent per item of information acquired), selectively focuséd on a\subset of the
more important information, and changed their pattern of processing in the
direction of relatively more attribute-based processing. This general pattern of
results is consistent with the simulation, which suggested that an efficient
strategy under severe time pressure was one that involved selective and
attribute-based processing.

The effects of time pressure were substantially less for those subjects with
a 25 as opposed to 15 second constraint. In the more moderate condition,
subjects showed evidence of acceleration in processing and some selectivity in
processing, but no evidence of a shift in the pattern of processing. These
results suggested a possible hierarchy of responses to time pressure. First,
people may try to respond to time pressure simply by working faster. If this is
insufficient, people may then focus on a subset of the available information.
Finally, if that is still insufficient, people may change processing strategies,
e.g., from alternative-based processing to attribute-based processing.

Although these results suggest high adaptivity, there was evidence to
suggest that the adaptivity to time pressure was not perfect on a trial by trial
basis. When the responses to the no time pressure condition were compared for
the two groups of subjects in the second experiment, some carryover from behavior
generated in response to the time pressure trials to performance on the no time

pressure trials was detected. Specifically, subjects who had the more severe 15
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second time constraint showed comparatively more attribute-based processing, even
in the no time pressure trials.

To summarize, the results provided strong evidence of adaptivity in decision
making. While not perfectly adaptive, our subjects were able to change
processing strategies in ways that the simulation indicated were appropriate.
Taken together, the results of the simulation, models of cognitive effort, and
experiments in adaptive decision making provide strong and.consis;ent support for
the proposed EIP approach to strategy selection. We believe that this approach
provides a more systematic approach to characterizing effort and accuracy for
decision strategies than any other currently available. It is our belief that
further application of this conceptualization to problems of céntingent strategy
selection would be very fruitful.

Although we are excited by the progress made thus far, there are several
incomplete aspects of our framework. The next section examines several of these
issues.

Some Unresolved Issues

Implicit in our approach is a top-down view of strategy selection. When
deciding how to decide, a decision maker is assumed to evaluate the costs and
benefits of the various strategies known to him or her and to select that
strategy which is in some sense best for the environment. We now believe that
this view is too restrictive. While we still espouse an effort/accuracy
viewpoint and the idea of multiple strategy use, we have begun to consider
several broader concerns which lead to a more complex view of contingent decision
behavior.

Assessing How Well One is Doing
In order to adapt to task demands, it seems reasonable that individuals must

determine, even if roughly, how well they are doing. The notion of adjustment
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via effort/accuracy tradeoffs, in particular, implies the ability to generate
ideas about the degree of effort and accuracy characterizing one’'s decision
process. Our data on adaptivity in strategy use suggest that people can learn to
change behavior as a function of task and context variables. Yet none of the
experiments provided subjects with explicit accuracy or outcome feedback. Thus,
how do people learn when and how to change decision strategies?

In the absence of explicit feedback, individuals must.someho; generate their
own feedback about effort and accuracy. This is not too difficult to imagine for
effort. In the course of solving a decision problem, the decision maker has a
fairly rich data base available about how effortful and/or difficult he or she is
finding the decision. This process feedback (Anzai and Simon,rl979) could
provide the basis for a change in strategy. To illustrate, consider a faculty
member asked to identify a small number (3) of job candidates to be brought in
for an interview. Assume that over 100 applicatian have been received. Also
assume that the faculty member is inexperienced at this task and that he or she
wants to do a good job. Initially, we suspect that the faculty member would try
to evaluate each application in great depth. However, at some point that person
would likely recognize that the process is becoming increasingly effortful and
would think about a change in processing strategy. One implication of such
readily available process feedback on effort is that considerations of effort
will play a prominent role in strategy selection.

Self-generation of accuracy feedback is not as obvious. One possibility is
that along with process feedback, people have some general knowledge of the
properties of a reasonable strategy. For example, decision makers might believe
that a good strategy involves looking first at the most important information for
all alternatives, and then looking at other information as desired or as time

allows. Some data supporting such general beliefs about good decision strategies
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are reported in Payne et. al. (1988). With such knowledge, the individual could
not only ascertain the effort required during the course of making a decision,
but could also determine how closely this decision process resembled his or her
notion of what a "good" strategy should entail. In the absence of environmental
constraints, the match between the strategy used and notions of a "good" strategy
shouid presumably be close and the individual’s accuracy assessment would be
"high". However, if there were severe environmental constfaints Ee.g., great
time pressure), the individual may feel that the strategy, either as executed or
while executing, did not match his or her notion of a reasonable strategy. For
example, important information may not have been examined before time ran out.
Klein (1983) reports data supporting this kind of learning abo;t the task during
decision making. The individual could then adjust the decision process to be
more in line with his or her notion of reasonableness, either on-line or the next
time such a decision was faced.

Recently, Reder (1987) has considered strategy changes without explicit
feedback in a task dealing with question answering strategies and proposed a
"feeling of knowing" process that is related to our ideas. She argues that
people may develop strategies that are adaptive to different problem environments
by trying to minimize effort while maintaining a feeling of knowing that a
reasonable answer is being produced. An interesting issue is how well-calibrated
such feelings of knowing may be in the area of decision making, and how they are
affected by decision task properties.

The possibility that process feedback provides information about both the
effort and accuracy of making a decision raises another question: Under what
conditions will explicit feedback about effort and accuracy be used by decision
makers? Creyer, Bettman, and Payne (1988) found that explicit feedback on the

time used to make a decision (a measure of effort used) had no effect on decision
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processes. Of greater interest, explicit accuracy feedback also had little
impact for decision problems similar to the high dispersion in probabilities
(weights) choice problems used in Payne et. al. (1988) and discussed above. On
the other hand, explicit accuracy feedback did change processing and improve
performance for those decision problems involving low di%persion in weights
(probabilities). One explanation of these results is that explicit accuracy
feedback is only needed to supplement process feedback for.those ;ituations where
the decision maker is faced with more difficult problems. When asked to rate
decision problems according to degree of difficulty, subjects rated low
dispersion problems as more difficult than high dispersion problems.

Although there is a large literature on feedback, 1earniné, and judgment
(Brehmer, 1980; Einhorn, 1980), issues regarding learning and contingent strategy
selection in decision making are just beginning to be explored. However, a
better understanding of the role of process feedback and strategy selection seems
crucial for building a more complete model of the adaptive use of heuristics in
decision making. As discussed in Johnson and Payne (1985){ learning mechanisms
in decision making also offer a solution to the infinite regress difficulty
associated with the hypothesis that people decide how to choose. Such strategy
decisions are not made often, but the relationship between task and context
variables and the efficiency of a decision strategy is learned over time.
Finally, as discussed next, process feedback may also be important in
understanding the construction of decision processes (Bettman, 1979) as well as
their selection.

A Constructive View of Choice and Editing

As noted above, effort/accuracy frameworks for strategy selection often

implicitly assume a top-down process. That is, information about the task is

used to assess the costs and benefits of various strategles, and the best
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strategy is then selected and applied to solving the choice problem. There are
data supporting such a goal-d;rected process of strategy selection (Payne, 1976).
Nonetheless, heuristic problem solvers not only use information extracted from
the initial problem definition in deciding how to search, but also utilize
information from states already explored in the problem space to identify
promising paths for search (Langley, Simon, Bradshaw, and Zytkow, 1987). That
is, as people learn about the problem structure during the'course\of making a
decision, they may change their processing to exploit this structure. This view
of strategy selection as an opportunistic process (Hayes-Roth and Hayes-Roth,
1979) also suggests that editing processes (Kahneman and Tversky, 1979) are a
crucial component of adaptivity.

Editing processes have been proposed as an important component of choice
(Kahneman and Tversky, 1979; Goldstein and Einhorn, 1987), with individuals
supposedly editfng choice problems into simpler forms before choosing. Editing
could involve cancellation of outcomes which are identical across alternatives,
eliminating dominated alternatives, and/or combining of equal payoff outcomes,
for example. To the extent that editing can simplify choice, it is potentially a
major component in understanding the role of cognitive effort and adaptivity to
different decision environments.

Whereas Kahneman and Tversky (1979) and Goldstein and Einhorn (1987) argue
that editing processes come first, with alternatives edited and then the
simplified options evaluated, we argue instead that editing occurs throughout a
choice whenever individuals notice some structure in the choice environment that
can be exploited. Hence, editing can be a bottom-up process, driven by the data,
as well as a priori or top-down. Thus, one might not decide a priori to
eliminate dominated alternatives but might eliminate such alternatives only if

noticed during the course of processing.
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The editing process itself may be adaptive in that the particular editing
operations used may be a function of problem states already explored. Different
types of processing will leave different traces in working memory, and these
traces will be more or less compatible with different editing operations. For
example, processing a pair of alternatives using an attriibute-based form of
processing will facilitate the detection of dominance, whereas an alternative-
based form of processing would discourage such detection. 'Hence,~different
choice strategies enable different editing operations during the course of
processing. Therefore, different choice environment properties will affect
editing because they affect strategy selection. This is likely to be
particularly true for the effects of information display. Slo;ic, for example,
(1972) has argued for a principle of concreteness, which states that individuals
tend to use information in the form in which it is displayed. To the extent this
is trﬁe, display should exert a strong influence on editing processes by
encouraging or discouraging various types of processing.

This opportunistic view of editing implies a more constructive view of
choice (Bettman, 1979). Such a view implies that people develop simplifications
and strategies as they progress in a decision process, rather than invoking them
a priori. Which regularities in the task enviromment (if any) are noted and
exploited can profoundly affect the course of the decision process, so the
sequence of editing operations can have a major impact on the resultant process
and decision (Tversky and Kahneman, 1986).

Amazingly, however, almost nothing is known about editing proéesses. Such
research topics as what features of a decision task are noticed and exploited,
how this changes with display format, and studies of the determinants of focus of
attention in decision making are badly needed. We agree with Yates, Jagacinski,

and Faber (1978) that events affecting attention in the real world are likely to
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be numerous and powerful and that such events are not just experimental nuisance
factors.
Incentives and Strategy Selection

As stated at the beginning of this chapter, the major focus of our research
has been on the role of cognitive effort in strategy selection. Questions of
strategy accuracy have played an important, but secondary,. role in our research.
In particular, we have not emphasized the direct role of incentives in strategy
selection, although subjects in our studies do receive compensation tied to
performance. However, it is clear that an effort/accuracy framework for strategy
selection must deal wich incentive effects more directly.

The effort/accuracy framework implies that people should utilize strategies
that provide greater accuracy at the cost of greater effort when the incentives
associated with accuracy are increased. However, as pointed out by several
authors (Tversky and Kahneman, 1986; Wright and Aboul-Ezz, 1986), incentives
sometimes enhance performance and at other times have no effect. We have
obtained similar mixed results in our own research. Sometimes incentive effects
are in the direction predicted by our framework, in that people increase the
amount of processing, are less selective in processing, and process more by
alternative than by attribute when goals and incentives are structured to
emphasis accuracy more than effort (Creyer, Bettman, and Payne, 1988). At other
times, however, we have found incentive effects either difficult to detect or in
directions opposite from those predicted. For exzmple, Simonsen (1987) found
that the frequency with which the context variable of asymmetric dominance
relationships (Huber, Payne, and Puto, 1982) impacts choice is increased with an
increased need to justify one'’s decision. To the extent that the need to justify

or be accountable for a decision impacts on the desire to make a "good" decision
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(Beach and Mitchell, 1978; Tetlock, 1985), this finding seems contrary to what
one would expect.

One solution to the ambiguity of this research is the common distinction
between working harder versus working smarter. Tversky and Kahneman (1986), for
example, argue that incentives work by focusing attention and prolonging
deliberation. That is, incentives cause people to work harder but not
necessarily smarter (see also Einhorn & Hogarth, 1986). Héwever,~if people do
not change strategies but just work harder, this may have the paradoxical effect
of increasing error in decisions through increased effort applied to executing a
flawed strategy (Arkes, Dawes, and Christensen, 1986). It is also important to
recognize that incentives will not eliminate errors if a normaéive strategy is
impossible to use due to information processing limitations or environmental
factors such as severe time pressure (Simon, 1981). Finally, any shift in
strategy due to incentives would seem to require awareness of alternative
strategies. In some cases, incentives may have limited impact due to a lack of
awareness of any better decision strategy than the one currently being used.
Thus, one important direction for research on strategy selection is to understand
better when and how incentives will impact processing and choice.

To this point, we have reviewed research concerned with basic research
questions in the area of behavioral decision research. However, as indicated in
the theme of this conference, the work of Hillel Einhorn was concerned both with
theory and application. Consequently, we will end this chapter with a discussion
of one implication of our program of research for improving decisions.

Designing Decision Displays
An exciting application of the effort/accuracy approach is guiding the
design of information displays to facilitate better decision making. By

designing displays which make more effective processing easier, decision
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performance should be improved. Like Slovic (1972), we suspect that decision-
makers are greatly influenced by the form of the information presented and are
unlikely to transform information so that it will fit strategies. By making
better strategies easier to use, the application of more efficient decision
heuristics can be encouraged.

An excellent demonstration of decision aiding through information display
changes is provided by Russo (1977). Russo argued that using unit price
information in the supermarket was unduly effortful, requiring that consumers
locate the various unit-price tags spread throughout the shelf and remember these
values until other brands could be located. He reduced the reguired effort by
combining all unit-price tags into a single list, sorted by unit price. A field
study comparing the existing shelf tags and the list showed that the list
produced a 2% decrease in the average price paid, representing 11% of the savings
possible by always buying the least expensive brand. More generally, encouraging
the use of efficient. strategies by making them easier to execute has important
implications for providing product information to the public (Bettman, Payne, and
Staelin, 1986).

Johnson, Payne, and Bettman (1988) show that the design of information
displays can have important consequences on the frequency of one of the most
dramatic decision errors, the preference reversal (Lichtenstein and Slovic,
1971). 1In the preference reversal paradigm, subjects choose among and give
monetary equivalents for two gambles. Preference reversals occur when a subject
indicates a choice of one gamble but gives a higher monetary equivalent for the
other gamble in the pair. In the typical preference reversal experiment, the
probabilities are described as fractions, a consequence of using a roulette wheel
to determine outcomes. Johnson et al. suggested that these fractions (29/36, for

example) discouraged the use of expectation strategies and facilitated the use of
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heuristic strategies which produced reversals. They manipulated the way
identical probabilities were displayed, ranging from simple decimals (.8) to
quite complex fractions (284/355). The complex fractions produced almost twice
as many reversals as the decimals. Further, process-tracing measures, collected
with Mouselab, were consistent with the notion that the simpler displays
encouraged using expectation strategies.

Together, these examples illustrate the principle of.2g§§iy;_ggg;§;gg
support. In contrast to more active approaches which replace human cognitive
processes to aid decisions, better decisions can be encouraged by designing
displays which passively encourage more accurate strategies by making them easier
to execute. Such reductions in execution effort can be achieved by using formats
which make operations such as comparisons easier or by making individual pieces
of data easier to process, for example.

Conclusion

A major finding of the last twenty years of decision research is that an
individual will us® many different strategies in making a decision, contingent
upon task demands (Einhorn and Hogarth, 1981; Payne, 1982; Abelson and Levi,
1985). The use of multiple strategies raises the fundamental issue of how people
decide to decide. This chapter reviews a program of research directed at
understanding the adaptive use of strategies in decision making. While people
clearly sometimes make decisions that violate certain principles of rationality
(Tversky, 1969), it is also becoming clear that decision makers oftemn adapt in

directions representing efficient effort/accuracy tradeoffs.
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Footnotes

Different EIPs may require different levels of effort. For example,
comparing two values may be easier than adding or multiplying them. Hence,
the operator counts could be weighted by some measure of the effort
required for each individual operator, such as the time estimates mentioned

below. The resulits remain essentially the same whether a weighted or

unweighted EIP count is used to measure effort.

Depending upon the definition of the particular strategy, the alternative
selected when time ran out was either the best altermative processed up to
the point time ran out or an alternative randomly chosen from those

alternatives not yet eliminated when time ran out.
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